A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance (Mer de Glace, Chamonix; **East Loven Glacier, Spitsberg)**

E. RANISAVLJEVIC¹, F. DEVIN¹, Y. LE NIR¹, J.M. FRIEDT², C. MARLIN³, M. GRISELIN⁴, D. LAFFLY⁵

¹ Ecole International des Sciences du Traitement de l'Information, Pau, France
 ² Univ. de Franche-Comté, FEMTO-ST, UMR 6174 CNRS, Besançon, France
 ³ Univ. de Paris-sud, IDES, UMR 8148 CNRS, Orsay, France
 ⁴ Univ. de Franche-Comté, THEMA, UMR 6049 CNRS, Besançon, France
 ⁵ Univ. de Toulouse, GEODE, UMR 5602 CNRS, Toulouse, France

Summary

Introduction

- I. Snow cover and glacier evolution
 - II. In-situ sensing constraints
- III. Cloud computing and Web Services
 - IV. Tasks architecture
 - V. Model
 - Conclusion

Introduction

- Hydro Sensor FLOWS project, supervised by M. Griselin (C. Marlin and D. Laffly)
 - Map the temporal evolution of the snow cover
 - Couple it with a hydrologic model
- East Loven glacier: experimental field
 - 4 years of different readings
 - Generate a huge data base

How can Cloud Computing improve the processing of the data base?

East Loven glacier

Snow Cover and Glacier Evolution

- Remote sensing: daily satellite imagery is not always accessible
 - Cost
 - Poor weather conditions (heavy cloud cover)
 - Fast events not visible
- In situ sensing: Ground based autonomous automated digital camera
 - 3 pictures / day
 - Huge data base
 - Reconstruct the satellite view
 - (D. Laffly et al., Cambridge 2010)

Six digital cameras are positioned around the glacier basin, providing complete glacier coverage

©Formosat

In-situ sensing: image processing

 Projection of the picture, from the oblique view to a plan view

 Classify the different phenomena (snow, ice)

Constraints processing

In-situ Constraints: Atmospheric Disturbance

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance

In-situ Constraints: Electronic Deficiency

- Poor weather conditions
 - Microcontroller "asleep" for several days
- Electromagnetic perturbation: reset of the microcontroller
 - 6 pictures / day
 - Discharge of the camera intern battery
 - Loss of the picture's date

In-situ Constraints: Geometry Variations

Modification of the shooting's parameters

In-situ constraints adjusted by computer

- Manually process all the pictures (over 30 000)
- Specific and heterogenous tools

Real need to provide an application :

- dynamically change the processing
- be as generic as possible to fit other needs
- avoid human operations as much as possible

Cloud Computing

Set of resources, servers and applications offered "as a service" over a network.

Advantages:

- Easiness of access
- Large storage capacity
- Lightness of application
- Modular : add, remove, modify services
- Scalable
 - Increase of users connected to the service
 - Increase the computing capacity according to the needs
 - Fault tolerance

Web Services

- Software offered as a service (SAAS)
- Multiple tasks
 - Cleaning / Usability
 - Dating
 - Cropping
 - Projecting
 - Constructing a mosaic
 - Classify glacier's phenomena (ice, snow ...)

Tasks Architecture

Tasks Architecture

Planner and Scheduler

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance

Example: Cropping Service

List of control points, Picture

Cropping Service

Picture cropped

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance

Conclusion

- Model:
 - Generic (web services)
 - Dynamic (planner and scheduler)
- The environmental sciences and the geoengineering generate a huge data base (Big Data). Cloud computing is an answer to some processing constraints and storage constraints.
- Evolution of the languages and paradigms of computer science.

